Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 18(5): e0285664, 2023.
Article in English | MEDLINE | ID: covidwho-2317056

ABSTRACT

In 2020, SARS-CoV-2 has spread rapidly across the globe, with most nations failing to prevent or substantially delay its introduction. While many countries have imposed some limitations on trans-border passenger traffic, the effect of these measures on the global spread of COVID-19 strains remains unclear. Here, we report an analysis of 3206 whole-genome sequences of SARS-CoV-2 samples from 78 regions of Russia covering the period before the spread of variants of concern (between March and November 2020). We describe recurring imports of multiple COVID-19 strains into Russia throughout this period, giving rise to 457 uniquely Russian transmission lineages, as well as repeated cross-border transmissions of local circulating variants out of Russia. While the phylogenetically inferred rate of cross-border transmissions was somewhat reduced during the period of the most stringent border closure, it still remained high, with multiple inferred imports that each led to detectable spread within the country. These results indicate that partial border closure has had little effect on trans-border transmission of variants, which helps explain the rapid global spread of newly arising SARS-CoV-2 variants throughout the pandemic.


Subject(s)
COVID-19 , Sprains and Strains , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , Russia/epidemiology
2.
Vaccines (Basel) ; 11(4)2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2302179

ABSTRACT

The vast majority of SARS-CoV-2 vaccines which are licensed or under development focus on the spike (S) protein and its receptor binding domain (RBD). However, the S protein shows considerable sequence variations among variants of concern. The aim of this study was to develop and characterize a SARS-CoV-2 vaccine targeting the highly conserved nucleocapsid (N) protein. Recombinant N protein was expressed in Escherichia coli, purified to homogeneity by chromatography and characterized by SDS-PAGE, immunoblotting, mass spectrometry, dynamic light scattering and differential scanning calorimetry. The vaccine, formulated as a squalane-based emulsion, was used to immunize Balb/c mice and NOD SCID gamma (NSG) mice engrafted with human PBMCs, rabbits and marmoset monkeys. Safety and immunogenicity of the vaccine was assessed via ELISA, cytokine titer assays and CFSE dilution assays. The protective effect of the vaccine was studied in SARS-CoV-2-infected Syrian hamsters. Immunization induced sustainable N-specific IgG responses and an N-specific mixed Th1/Th2 cytokine response. In marmoset monkeys, an N-specific CD4+/CD8+ T cell response was observed. Vaccinated Syrian hamsters showed reduced lung histopathology, lower virus proliferation, lower lung weight relative to the body, and faster body weight recovery. Convacell® thus is shown to be effective and may augment the existing armamentarium of vaccines against COVID-19.

3.
Cells ; 11(19)2022 09 21.
Article in English | MEDLINE | ID: covidwho-2043596

ABSTRACT

The coronavirus disease 2019 (COVID-19) is accompanied by a cytokine storm with the release of many proinflammatory factors and development of respiratory syndrome. Several SARS-CoV-2 lineages have been identified, and the Delta variant (B.1.617), linked with high mortality risk, has become dominant in many countries. Understanding the immune responses associated with COVID-19 lineages may therefore aid the development of therapeutic and diagnostic strategies. Multiple single-cell gene expression studies revealed innate and adaptive immunological factors and pathways correlated with COVID-19 severity. Additional investigations covering host-pathogen response characteristics for infection caused by different lineages are required. Here, we performed single-cell transcriptome profiling of blood mononuclear cells from the individuals with different severity of the COVID-19 and virus lineages to uncover variant specific molecular factors associated with immunity. We identified significant changes in lymphoid and myeloid cells. Our study highlights that an abundant population of monocytes with specific gene expression signatures accompanies Delta lineage of SARS-CoV-2 and contributes to COVID-19 pathogenesis inferring immune components for targeted therapy.


Subject(s)
COVID-19 , COVID-19/genetics , Gene Expression , Humans , Immunologic Factors , SARS-CoV-2
4.
J Immunol Res ; 2021: 4414544, 2021.
Article in English | MEDLINE | ID: covidwho-1443671

ABSTRACT

COVID-19 is a respiratory infection caused by the SARS-CoV-2 virus that can rapidly escalate to life-threatening pneumonia and acute respiratory distress syndrome (ARDS). Recently, extracellular high mobility group box 1 (HMGB1) has been identified as an essential component of cytokine storms that occur with COVID-19; HMGB1 levels correlate significantly with disease severity. Thus, the modulation of HMGB1 release may be vital for treating COVID-19. HMGB1 is a ubiquitous nuclear DNA-binding protein whose biological function depends on posttranslational modifications, its redox state, and its cellular localization. The acetylation of HMGB1 is a prerequisite for its translocation from the nucleus to the cytoplasm and then to the extracellular milieu. When released, HMGB1 acts as a proinflammatory cytokine that binds primarily to toll-like receptor 4 (TLR4) and RAGE, thereby stimulating immune cells, endothelial cells, and airway epithelial cells to produce cytokines, chemokines, and other inflammatory mediators. In this study, we demonstrate that inhaled [D-Ala2]-dynorphin 1-6 (leytragin), a peptide agonist of δ-opioid receptors, significantly inhibits HMGB1 secretion in mice with lipopolysaccharide- (LPS-) induced acute lung injury. The mechanism of action involves preventing HMGB1's hyperacetylation at critical lysine residues within nuclear localization sites, as well as promoting the expression of sirtuin 1 (SIRT1), an enzyme known to deacetylate HMGB1. Leytragin's effects are mediated by opioid receptors, since naloxone, an antagonist of opioid receptors, abrogates the leytragin effect on SIRT1 expression. Overall, our results identify leytragin as a promising therapeutic agent for the treatment of pulmonary inflammation associated with HMGB1 release. In a broader context, we demonstrate that the opioidergic system in the lungs may represent a promising target for the treatment of inflammatory lung diseases.


Subject(s)
Acute Lung Injury/drug therapy , Dynorphins/pharmacology , HMGB1 Protein/metabolism , Acetylation , Acute Lung Injury/metabolism , Animals , COVID-19/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Receptors, Opioid/metabolism , Sirtuin 1/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL